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SUMMARY

The problem of allocating two typee of aircraft (bombers
and fighters) among three different air tasks (counter air,
alr defense, and support of ground operations) in a multi-
stoike campalgn is analyzed as a two—sided war game. It ia
assumed thet & bomber can be used in either the counter air or
giound support operations, while a fighter can be used in
either the air defense or ground support roles. That is,
bombers and fighters have one task—ground support—in common.

Optimal employment during the last strikes of the campaign
consists of a concenvration of all resources on support of
ground operations. Optimal ewmployment during the early strikes
of the éampaign requires randomization by both sides.
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ALLOCATION OF TWO TYPES OF AIRCRAFT
IN TACTICAL AIR WAR: A JAMJI-THEORETIC ANALYSIS

1. INTRODUCTION
An important allocation problem assoclated with a tactical

alr campaign is that of allocating the tactical air forces among
the various air tasks in a competitive enviconment. Taking

into account the enemy's poasible allocationa, we wiah to
determine an optimal employment of tactical resources. 3Stated
in this form, this allocation problem is a problem in the

theory of games of strategy.

In & previous paper (1], we studied the employment of
tactical air forces in the varisus theater air tasks by rormu-
lating the problem as a zero—sum two-person game. It was
assumed there that bocth sides had one type of aireraft to be
allocated among three tasks; counter air, air defemse, and
close suppor+*.

The game formulated in the present paper assumes that
each side has two different types of aircraft to which we give
the generic names of bomber and fighter. A bomber can only be
used in e'ther the counter a&air or ground support roles, and
a fighter only in the air defense or ground support roles.

The introduction of two types of aircraf. into the
tactical game ylelds substantlially different and moie complex
optimal tactics even for campaigns of short duration. Im {1]
it is shown that if the allocations aye restricted to counter

air and close support tasks, then both sides have optimal pure
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strategies; if a third task is added, then one side has an
optimal pure strategy 7 “ ths other s nmixed strategy. In
contrast, 1f two types of aircraft are to be alilocated wmong
three tasks, then both sides may have optimal mixed strategles.
As Aan example of the complexity of ine last case, we shall
present the optimal tactics, 1.e., the optimal employment of
aireraft, for a relatively short campalgn.

2. FORMULATION OF TACTICAL WAR GAME

The tactical air war game 1s viewsd as & ssries of strikes,
or moves, each of which consists of s 'mui%taneous counter alr,
air defense and ground support operatiocns. These operations
are undertaken by each side in order to accomplish & gilven theater
mission or payoff.

Suppose that at the start of the campaign one side, which
we c8ll Blue, has an air force consisting of B bombers and
P rfighters, while his cpponent, Red han 8 bomders and ¢
fighters. REach bomber may be used on counter air or ground
support missions. Rach fighter may be used on air defense or
ground support missions.

Let us now examine a strike in the campaign, say the
initie]l strike. 3Suppose Blue dispatches x of his bombers on
counter air operations, and ths rengindcr, B - x, on ground
support oparationa. Jome of thess x “ombers, say rx of them,
where 0 ( r ( 1, are dispatched against enemy tomber filelds
and the remainder, (1 - r)x, against enemy fighbter fields.
Suppose that during this striks Blue alsc sends u of the P




fighters on air defense missions and the remainder, P - u
fighters, on ground support operatione. Hence B + P - x -~ U
Blue planes participate in ground support operations during
this initial strike.

Similarly, suppose that on the initial strike Red allocates
¢ bombers to counter air operations, and f — ¢ bombers i
ground support operetions. Of these ¢ bombers, let pé¢ of them,
where 0 < p < 1, be agsigned to attack enemy bomber fields and
the remainder, (1 — p)¢ bombers, to attack enemy fighter fields.
Suppose that Red also assigns pu of the ¢ fighters to air defensge
missions and the remainder, ¢ — . fighters, to ground support
missions. The number of Red planzs participating in ground
support operations during this initial strike is therefore
B+ 06— ¢ -y,

In malking their allocations the players know the size of
their own and cpponent's forces. Howev~r, neither side knows
the allocation made by his opponent until after the strike 1is
completed.

Let us nov describe the outcome of the gbove strike. The
fighters that Red allocates to air defenss will reduce the
number of Blue bombers that penetrate to counter-air targets,
but will nct affect ground support coperetions. T™e number of
attacking planes that are prevented from reaching their targets
will be assumed to Dbe proportionel to u, say ¢u, uniess Blue's
attacking planes are saturated, i.e., if cu exceeds x. The

constant ¢ is called the air defense potential, as it measures
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the effectiveness of the air defense zircraft. We assume that
the Red fighters are unable to distinguish which of the Blue
attacking bombers are destined for Red bomber bases and which
are desi.ned for Red fighter hases. The Interceptions are
assumed to be distributed uni‘ormly at random among the attack—
ing atroraft. Thus, the number of Blue bombers penetrating
Red's defense 18 X -~ Cu at long as cu is not larger than x.

If cu is larger than x, no Blue bombers penetrate. Thus the
number of Blue bombers penetrating Red's defenses is given by

max (0, x — cp).

Of the penetrating bombers, r max (0, x — cu) will attack
Red bomber fields and (1 — r) max (0, x — cu) will attack Red
fighter fields. Therefore the number of Blue bombers attack-—
ing Red bomber flelds is

max(0, r(x - cu)l, ogrgl,
and the number of Blue bombers attacking Red fighter fleids is
max {0, (1 — r)(x — ¢cu)] ogrg l.

The Blue bombers that penetrats to target destroy parked
eneny alrcraft by dropping bombs on the Red airfields. Let
us assume that sach of Rlue's penetreting bombers can destroy
bl eneamy bombers or b2 enexxy {ighters, and let us further a-sume
that all of Red's aircraft are at risk at the time of a strike.
T™en the numtar of Red bompers destroyed by Blue on the initial
strike 1s:

®rin {p, b, max {0, v(x - Cu)]} ,
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and the number of Red fighters destroyed 1is
min {é, b, max [0, (1 — r)(x - cu)]} .

We shall assume that the losses the Red air force suffers
from accidents and ground defenses are small, and will be
neglected in our analysis. We further assume that planes
used in air defense and ground support suffer no losses, and
that Red bombers failing to penetrate the Blue alir defense
return to base. That is to say, we assume that losses suf-—
fered in the air battle are negligible compared to the other
losses, and that air defense aircraft prevent attacking planes
from successfully delivering their bombs without neceussarily
destroying the bombers. Thus, we see that during the initial

strike Red's bomber force is reduced to
By = ma.x{o, B — b, max (0, r(x - cu)]} ’
and Red's fighter force i1s reduced to
©) = max'{o, ® — by, max {0, (1 — r)(x— cu)]} .

In exactly the same manner we can analyze the effect of
this initial strike on Blue's aircraft inventories. At the
end of the initial strike, the number of bombers available
to Blue is

Bl-max{o, B - d, max [0, p(& - eu)]},
and the number of fighters 1is

P, = max {0, P —d, max [0, (1-p)(§~eu)l},



P-1901%
6

where e, dl and d2 heve similar meanings as c, bl and b2,
respectively.

Blue now has B). bombers and Pl fighters and Red has 51
bombers and 01 fighters that they can allocate for the second
strike. This strike will result in new inventories By, Pp, B3, O
for the third strike. This process is repeated for the dura-
tion of the campaign, which consists of a predetermined number
of atrikes.

3. PAYOFP ‘

In our model the function of the tactical air force is
to assist the ground foices, and the results will vary with
the number of planes allocated to ground support operations.
On the other hand, the enemy ;lao can aid his ground forces
by allocating aircraft to ground support operations. Thus
some of the assistance might "cancel out." We shall assume
that the assistance offered to Blue ground forces, or payoff
to Blue, on a given strike can be measured by the difference
between Blue ground support sorties and Red ground support

sorties, namely
(B+ F—x=u)~(B+ 0o~ ¢t—u)

Implicit here 1s the assumption that bombers and fighters are
equally effective in the ground swport role. The payoff, M,
to Blue for the entire campaign of N strikes is the sum of

these scores rgr each of the N strikes, or

M.L[(a+p-'x-u)-(a+¢-e-u) ].
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The problem faced by each side 1s now apparent. For
example, Blue would like to allocate a large number of planes
to ground support missions and thereby increase the payoff at
a given move, yet he would like to destroy the Red air force
by means of counter air operations in order to ensure that
Red will not be able to mount any ground support sorties in
subsequent strikes. Purther, if Blue does not provide for
air defense he may suffer severc losses to his own air force
if Red elects to mount a large counter air strike. BRach player
has to take the future as well as the possibilities open to

his opponent into account.

i, PARTICUT.AR PARAMETER VALUES °‘
Prom the descciption of the game and the definition of

the payoff function, it 1s clear that tho optimal tactice will
depend on the values of the coq’tantn bl' b2. ¢, o, dl' d2 as
well as on the magnitude of the initial inventories, which are
B and F for Bluec and p and ¢ for Red. Since our main purpose
in this paper is to illustrate how the optimal allocations of
two types of aircraft vary with the size of the initial in-
ventories, we shall assign particular values to the six con-
stants. For computational convenience we shall let b1 - b2
=mCmemd = d2 -1,

The inventory of Blue planes at the end of a strike now

becomes
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B, = max {0, B— max [0, p(§ - u)]}
F) = max {0, F -~ max [0, (1—9)(€—U)]} ,
and the inventory of Red planes becomes
| B, = max {o, B — max [0, r(x - u)]}
¢ = max {0, ¢ — max [0, (1~ r)(x~u)l}.

Pinally we assume that at the start of the campaign, the
fighter strength of the two air forces are equal, that 1s
P = ¢. To facilitate the analysis of the problem let us take
Pw ®=1 at the start of the campaign; this merely means that
we are changing our unit of measurement from the individual
airplane to the total fighter force at the start of the cam~
paign.

Although we have formulated the game for an arbitrary
number of strikes, we shall present the optimal tactlcs for
campaigns of three strikes. The complete mathematical proofs
o’ these results are given in [2). However, the technique used
to derive the results is sketched in the Appendix, together with
an outline of the method of proof. A precise mathematical
formulation of the game in normal form 1s also given in the

Appendix.

5. OPTIMAL TACTICS — EQUAL STRENGTH

We begin by describing the optimal tactics for the case
in which Red and Rlue initially have the same strengths, that
18, when Bw g and Fe ¢ = 1. Fufther, we shall restrict
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ourselves to a ~ampalign of three strikes.

First consider the initial move of the game. The nature
of the optimal tactic depends on the bomber strength. Let us
deriote the value of the common bomber strength by k; l.e.,
B=pf =« k. Then the optimal tactics at the firet move are as
follows.

Optimal Tactics at Initial Strike

If k > 2, then each side uses all of its bombers on
counter air and all of 1its fighters on air defense. Of the
bombers assigned to counter air targets, the fraction assigned
to enemy bomber flelds is k/(k + 1), with 1 — k/(k + 1) of the
bombers assigned to enemy fighter flelds.

If 1 < k £ 2, then each side must bluff, i.e., randomize,
over three tactics. Each slde sends all bombers on counter
air and all fighters on air defense with probability (k - 1)/2.
Each slde sends all bombers on counter alr and all fighters on
ground support with probability (2 — k)/2. Each side sends
all bombers on ground support and all fighters on air defense
with probability 1/2. Of the bombers assigned to counter air
targets, the fraction assigned to bomber fields is k/(k + 1),
with the rest going against fighter flelds.

If k { 1 each side nmust again bluff, but now only over
two choices. This time, the tactic ¢f all bombers on counter
alir and all fighters on air defense 18 chosen with probabllity
one-half and the tactic of all bombers and all fighters on
ground support 1s chosen also with prbbability one-half. Again,

of the bombers allocated to counter air, the fraction assigned
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to enemy bomber fleldas 1s %/{k + 1), with the rest attacking
fighter {leids.

(otimal Tactics for Last Two Moves

The optimal tactics for the last two moves of the game
are the same for each player, and coneist cf concentrating
all resources on support of ground operationsg.

The interesting feature of the optimal tactics, 1s that
&lthough the strengths of the two sldes are the same, both players
must randomlize, or bluff, for an appreciable range »f initial
conditicna. This is quite different from the optimal tactics
in the corresponding situation when we have only one type of
aircraft capabie of performing any type of mission. 1In the
latter case, when the twou sides are of equal strength,; eaci.

side has a pure strategy, and fheie 15 no need to bluff.

6.  OPTIMAL TACTICS — UNEQUAL BOMBER STREKATHS

We shall now drop the ussumption that Red and Blue have
equal homber forces at the sthrt of the campalgn. The assump—
tion that P = ¢ = 1 s8till holds. Since th _ffectlveness of
the Red and Rlue alrcraft are the same, to describe the optimal
taebica, we can restrict ouraselves to the situation in which
the Riue bomber force is inltially larger than or equal to

he Red bomber force. That ies B > f. 1f the converse is true,

renely, 8 > B, the optimal tactlics are obtalned from the caese
B > B by interchanging the roles o Blue and Red.

In order to describe the optimal tactics, it 1is necessary

to conslder several cases, according to the difference between
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Blue and Red bomber strengths at the start of the campaign.

We therefore define
me B-@

The nature o:! the optimal tactic will depend on the relative
strengths of Red and Blue. Rach possible combination of
initial Blue and Red bomber strengths is given by a pair of
numbers (B, B), and hence can be represented by & point in

the (B, B) plane with B > B. Figure 1 presents a decomposition
of the (B, B) plane into nine regions. We shall describe the

optimal tactics at the initlal move for each region.

Optimal Tactics at Initial Move

The cptimali allocations of aircraft to the various tasks
at the initial move 18 given in Table 1. Of the Blue bombers
sent against counter air targets, the fraction sent against
bomber fields 1s B/(8 + 1), and the fractiocn sent against
fignter flelds i1t 1/(B + 1). Of the Red bombers seunt against
counter air targets, the fraction assigned to bomber fields
is B/(B + 1) and the fraction assigned to fighter fields 1is
1/(B + 1).

Optimal Tactics During Last Two Moves

The optimal allocation for each side during the last two

moves 1as Lo assign ell aircraft to ground support operations.
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VALUE OF GAME AND OPTIMAL CHOICES POR INITIAL MOVE

Region of Blue Optimal Red Optimal
B, B) Plane Choice Choice
See Pig. 1) Value Cholce Cholce

No. | Description of Game (x, u) Prob.| (¢, m) Prob.
Ogmg 1l ) )

1 Osr}sl ZJm (Bnﬁ) ? (B:B) z
0¢Egl (0, 0) | % (0, 0) 5
Ogmg (3, 8| 5 | (e, 1| 24
0¢B <1 %m (R, 0) 0 (6, 0) ?—E-E
1 ¢Bg2 (0, )| % (0, 1) 3
1$mg% (B, B) % (8, 1) gﬁ:%"'

R o™ - -

2 ogsgr | Ime dmliBBli(e, o) |52kl (8, 0| Sy
1¢Bg2 (0, o) | grgay| (0, V)| 3

4 %sasl hm+g_1 (Bo B) i (B) 1) Ea)
zsnsg (B, 0) é- (o, 1) %

(8, 1)| g
1
£ 4m (B, 0)

I Y SO Y I Dt I

0 S B $ 2 © - (on 1) n’
1
(0, O) 'u‘
g 1
ogmgs g ()| § |1 3
6 1 gBg2 m + § -1
8 1
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Table 1—Continued
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Region of Blue Optimal Red Optimal
EB, B) Plane Choice Choice
See Fig. 1) Value Cholce Cholce
No. | Description of Game (x, u) Prob.| (&, m) | Prob.
ogmg1 (s, 1) B3| (5, 1) | B2
7| 1¢Bg2 Im (B, 0) |Z5£ | (B, 0) | &52
1<Bg? (0, 1) | 5 |(o, )| 3
"
0 m
8 = £ 5 4m (B, 1) 1 (8, 1) 1
2¢8B
9 % £m % (&% l\ N (8, 1) é‘
2m o+
248 ) (8, 0 | %
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7. DISCUSSION OF OPTIMAL TACTICS

That portion of the (B, B) plane for which 0 { m £ 3/2
can be thought of as being the set of initlal conditions for
which the opponents are about equal in strength. For, in the
part of the plane where 0 { m £ 3/2, one can say that "both
players do the same thing," if by doing the "same thing" is
meant randomizing over the same number of cholces. In some
of the regions in the strip 0 { m { 3/2, namely Regions 1, 7,
and 8, the similarity of the strategies of the two players is
even more marked. These regions have segments of the line
m = 0 as part of their boundary and the character of the
optimal strategies on these segments is preserved throughout
the regions. In fact, in these regions, both players have
the same strategies, Jjust as they do on the linem = 0. In
Region 8, cach player uses all his bombers to attack counter
-air targets and all his fighters on air defense. In Region
T, each player randomlizes over the following three tactics:
all bombers to attack and all fighters on defense, all bombers
to attack and all fighters on ground support, all bombers to
ground support and all fighters to alr defense. In Region 1l
each player either goes "all nut" on offense and defense,

X o B, u=sp for Blue, and ¢ @« 8, 1 = B for Red, or goes "all
out" for ground aupport operations by choosing X w U = £ w u = 0,
each tactic being chosen with probability 1/2. Since in

Reglon 1 the bomber strength for each player is less than the
opponent's fighter strength, there 1s no need to use all of

the fighter foice on air defeﬁse. Therefore, only enough fighters
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needed to ma‘ch the largest possible numbler of incoming bombers
are allocated to alr defense. It should also be pcinted out that
Region 8 1s the conly regin~n where both players have pure optimal
tactics.
That portion of the (B, B) plane lying above the line
m = 3/2, can be thought of constituting the set of initial
conditions for which Bluc 1s stronger than Red. If m > 3/2,
Blue has & pure optimal tactic and Red must randomize,
Plnally, we call attentlon to a curious phenomenon ir

Region 3., It is the only region in which the game value 1s

not a linear function of B and B.
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Appendix

l. MATHEMATICAL FORMULATION OF GAME

Let the moves be numbered from the end of the game; 1i.e.,
the n—th move means n moves to the end of the game. The
players' allocations on the n—-th move determin: the state

variables for the (n-1)-st move as follows:
Byy = max [0, By - Py max (0, & ~ )]

@y T = ex [0 By = (1= py) mex (0 6 = )]
Bo-y = max [0, By — 1, max (0, X = )]

a1 = max [0, o) ~ (1= r) max (0, x; - )]

For the N-move game, the payoff to Blue is given by
N,
O A (A A N T RS L)
Nel
It 1s assumed that each player knows the manner in which the
game proceeds; namely each player has the information expressed
by equations (1). It is further assumed that at each stage
of the game both players know the state variables and the
entire past history of the play. That i1s, at the n—-th move
both players know N, BN’ FN. BN' @N and Xy Ugs Pyo 51 Hes Py
fori1e«N,n—-1, ..., 0 42, n 4+ 1, Since they also know
equations (1) it follows that at the n—th move they know
Bi’ Fi’ 81’ ®1 for 1 m N, N=1, ..., n +1, n.
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The pure strategies of the game in normal form will now
be defined inductively on the number of moves in the game.
Pirst, a strategy for Blue in a one-move gamc 18 a choice of
a point X; = (xy, U;, r}) in the cube 0 { x; < By, O S vy < Py,
04 r, {1l. Similarly a strategy for Red 1s a cholce of a point
Let oy be a strategy for Blue in an N-move game; oN? of coursce,
is a function of By, Fy, By, ¥. In an (N+1)-move game, at the
(N+1)=-8st move Blue choosea & point Xye1 ™ (xN+1, Uyale rN+1)
in the cube DN+1 defined by

0S Xy S Byyr 0SSy S Py 0SS h

and simultaneously Red chooses a point YN+1 - (EN+1' (YR p"+1)
in the cube AN+1 defined by

0 < Eng S Buarr O S Hpgy S Ogar 05 Py S 10

These cholces yleld state variadbles BN' FN' BN’ °N by equaticno
(1). A strategy Op41 for Blue in the N<+l-move game io then

defined as a cholice xN+1 in DN+1 and a function AN that assoo-—-
iates to each point (XN+1’ Yﬁ+1) in the product space DN+1 AN+1

a strategy on in the N-move game. Thus Onel can be written ag

Iner * (T Ny) -

Similarly a strategy Tt for Red in the (N+l)-move game in

N+l
defined as a cholce Yh+1 and’a function v" that assocliates

with each (XN+1' YN+1) a strategy T

N in the N-move game.
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Thus < can be written as

N+l

a1 = (Yyerr o) -

Mixed strategies for the players can now be defined in a
similar manner. For a game of one move a mixed strategy for
Blue is a probability distribution 01 over tho cube Dl' and
a mixed strategy for Red is a‘probability distribution “1 over
the cube Al' Suppose now that mixed strategies for games of
length N have been dcfined. Lot GN be a mixed strategy for
Blue in an N-move game. A mixecd strategy °N+l in a game of
N+1 moves 1o a probability Jaatrlbution Eng) OVer the cube
Dy, 0nd a function Ay that assvoclates to each (XN+1. YN+1)

a mixcd strategy ox in the N-move game. Thus thoe mixod atrategy

in the (N+l)-move game can be written as

Oyer = (Byqye My):

Mixed strateglieo "N+1 for Red are defincd similarly by a dis-
tributl on hN+l or A"+1 and a functiun *N' and can be written

ag

Hysr = (Ryyye ¥y

2. SUFPICIENT CONDITIONS FOR OPTIMAI, STRATEGIRS

Suppose that in the game of length N there exist atratcgles
Gy for Blue and Hy for Red with the following propertiess
(1) 1If Blue playso 0; and Red plays H;, the
expectation 8(0;4 u;) exists.
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(11) For all Red pure strategles 7y, E(Gy, 7))

exists, and
* " »
E(GN: TN) 2 (G s H'N) .
(111) PFor all Blue pure strategies oy> E(oN, H;)
exists, and

* * *
E(UN) HN) S E(G s H}() .
In this event the game 1is said to have a value

Vy - VN(BN’ Fy: By» ¢N) given by

Vi(Bys Fy» Bys Oy) = E(Gg, HY);

G; is sald to be an optimal strategy for Blue and H;; 1s said
to be an optimal strategy for Red. The value, as lndicated
by the notation, is a function of the initial conditions

By, Fy» By Oy

Define

Dol Xna1s Yned) = Buan * Pyl — Xe1l — Yl ~ Prel — Sy

+ Ena1 My

and
N1 e Yea) = Iyvga (Xngar Ynga) + V(Bye Fyo By Oy)s

wherc ﬁp P, ﬂN, QN are obtained from BN+1' FN+1’ BN+1' °N+1
by means of (1) and the cholces (XN+1’ YN+1)‘ We can now

state a Lemma thut enables us to solve the game inductlvely.
Lemna 1. Let the gamc of length N have value

. » »*
VN(BN, Fy» By» ¢N), with cptimal strategles Gy, and Hy for Blue
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and Red, respectively. Let 8;+1 be a distribution in DN+1 and
*»
hN+1 a distributis. on AN+1 such that

(3) My (Byrs Y )demgy 2 ¥y (grs Yigpn )8R, 18m0,0
for all Yh+1.

(W) [y (yays Yydang < ] My (Xyaa» Yya1)98y,1 04
for all XN+1.

Then the game of length N+l has value

vﬁ+1(BN+1’ FN+1' Pye1 ¢N+1) - JOrMN+1(xN+1’ YN+l)d3;l+1dh;+l‘

and the optimal strategies are

- » » P Bl . h' » r a
Gy = (8y,1s @) for Blue, Hy . = (hy ., Hy) for Red.

The proof of this lemma 18 the same as that given for the

analogous result in (1] and therefore will not be repeated here.

3. SOLUTION FOR N = 1, 2

For N = 1, an examination of the payoff (2) shows that

both Biue and Red have optimil pure gtrategles consisting of

the cholice-n X} =Uu) = 0 for Blue, and El =y = O for Red.

Te choices of ry and p, are clearly arbitrary in this case.

The value of the game in this instance 1s V1 - Bl + Fl - ﬂl - 01.
It follows from Lemma 1 that for N = 2 1t sufficesa to

consider

Ma(Xps Yp) = By + Fy = By — O — X5 — Uy + 65 + upy +
(B, + P — B, ~ 9] .
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By means of equations (1), the quantity in square brackets can
be expressed in terms of quantities involving the subszript 2.
When the coefficients of the quantities X5, Uy 52, H, are then
examlined, 1t 1s seen that the optimal choice for BRlue is
o=, = o, Ty arbitrary, and the optimal choice for Red 1s
€.

<

18 V, = 2(B, + F, — B, — %,).

= jp, =0, Po arbitrary. The value of the two—-move game

3. SOLUTION PFOR N = 3 ‘
It follows frum Lemma 1 that for N = 3 1t suffices to

conslder the game with payoff

It can be shown that since the optimal cholces for 1 = 1, 2 are
X; =u, = 51 -y = 0, then the optimal choice of ry is
B3/(B3 + ¢3), and the optimal choice of p. 1s 133/(93 + Fj).
The rest of the proof conaists of verifying that the strategies
given in Table 1, do indeed satisfy (3) and (4). We note here
that since we first determine the optimal ry and p3, we can
now take X, = (x3, u3), Y3 - (63, u3) in (3) and (4). Ths
verification process3, although rather long and tedious, 1is
fairly straightforward. It is presented in [(2].

A more difficult problem than that of verifying, 13 that of
guessing the optimal strategles, or stated in another way, that
of selecting the candidates for verification. 1In the case of

equal initlal bomber strengths the following procedure was used.



The trial assumption was first made that the optimal strategles
would consist of step functions with at most &8 finite nunber

of jumps and that thease jumps would occur at extrsme points

of the strategy spaces. A finite matrix game ~as then set up
wilh payoff M3(X3, Y3) and strategles chosen from the extreme
points of the strategy spaces D and A. The solution of the
resulting matrix game was then determined, and the optimal
strategies found for the matrix game were tested for optimality
in the full game by substituting them in (3) and (4). If k<1,
however, it is clear from heurlintic grounds that some of ihe
extreme points are dominated by other bourndary points. For
example, from the structure of the game 1t is clear that if

k <1, then (k, 1) wastus some of Blue's fighters and (k, k)
should dominate (k, 1). The matrix game was therefore expended
in this case to include such atrategies.

In the case of unequal 1lnitlal bomber strengths the methed
used to guecs the optimal sirategies was a combination of the
method used in the symmetric case, namely, setting up a finite
matrix game, and what might be described as 'contagion and
continuity." That 1s, clues as to the nature of the optimal
strategles were cbtained {rom the knowledge of “he solution in
contiguous regions, and these were used to ruess the optimal
strategles or to modify the appropriate matrix games. This
process was especially useful when one could dctermine the value
of the game in a reglon by continuity from knowleuge of the

vaiues in adjacent reglons.
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